
This book is licensed under a Creative Commons Attribution 3.0 License

16. The mathematics of
algorithm analysis

Learning objectives:

• worst-case and average performance of an algorithm

• growth rate of a function

• asymptotics: O(), Ω(), ∴Θ ()

• asymptotic behavior of sums

• solution techniques for recurrence relations

• asymptotic performance of divide-and-conquer algorithms

• average number of inversions and average distance in a permutation

• trees and their properties

Growth rates and orders of magnitude

To understand a specific algorithm, it is useful to ask and answer the following questions, usually in this order:

What is the problem to be solved? What is the main idea on which this algorithm is based? Why is it correct? How

efficient is it?

The variety of problems is vast, and so is the variety of "main ideas" that lead one to design an algorithm and

establish its correctness. True, there are general algorithmic principles or schemas which are problem-independent,

but these rarely suffice: Interesting algorithms typically exploit specific features of a problem, so there is no unified

approach to understanding the logic of algorithms. Remarkably, there is a unified approach to the efficiency

analysis of algorithms, where efficiency is measured by a program's time and storage requirements. This is

remarkable because there is great variety in (1) sets of input data and (2) environments (computers, operating

systems, programming languages, coding techniques), and these differences have a great influence on the run time

and storage consumed by a program. These two types of differences are overcome as follows.

Different sets of input data: worst-case and average performance

The most important characteristic of a set of data is its size, measured in terms of any unit convenient to the

problem at hand. This is typically the number of primitive objects in the data, such as bits, bytes, integers, or any

monotonic function thereof, such as the magnitude of an integer. Examples: For sorting, the number n of elements

is natural; for square matrices, the number n of rows and columns is convenient; it is a monotonic function (square

root) of the actual size n2 of the data. An algorithm may well behave very differently on different data sets of equal

size n—among all possible configurations of given size n some will be favorable, others less so. Both the worst-case

data set of size n and the average over all data sets of size n provide well-defined and important measures of

efficiency. Example: When sorting data sets about whose order nothing is known, average performance is well

characterized by averaging run time over all n! permutations of the n elements.

Algorithms and Data Structures 146 A Global Text

http://creativecommons.org/licenses/by/3.0/

16. The mathematics of algorithm analysis

Different environments: focus on growth rate and ignore constants

The work performed by an algorithm is expressed as a function of the problem size, typically measured by size n

of the input data. By focusing on the growth rate of this function but ignoring specific constants, we succeed in

losing a lot of detail information that changes wildly from one computing environment to another, while retaining

some essential information that is remarkably invariant when moving a computation from a micro- to a

supercomputer, from machine language to Pascal, from amateur to professional programmer. The definition of

general measures for the complexity of problems and for the efficiency of algorithms is a major achievement of

computer science. It is based on the notions of asymptotic time and space complexity. Asymptotics renounces

exact measurement but states how the work grows as the problem size increases. This information often suffices to

distinguish efficient algorithms from inefficient ones. The asymptotic behavior of an algorithm is described by the

O(), Ω(), Θ(), and o() notations. To determine the amount of work to be performed by an algorithm we count

operations that take constant time (independently of n) and data objects that require constant storage space. The

time required by an addition, comparison, or exchange of two numbers is typically independent of how many

numbers we are processing; so is the storage requirement for a number.

Assume that the time required by four algorithms A1, A2, A3, and A4 is log2n, n, n · log2n, and n2, respectively. The

following table shows that for sizes of data sets that frequently occur in practice, from n ≈ 10 3 to 106, the difference

in growth rate translates into large numerical differences:

n A1 = log2n A2 = n A3 = n · log2n A4 = n2

25 = 32 5 25 = 32

5 · 25 = 160 210 ≈ 103

210 = 1024 10 210 ≈ 103 10 · 210 ≈ 104 220 ≈ 106

220 ≈ 106 20 220 ≈ 106 20 · 220 ≈ 2 · 107 240 ≈ 1012

For a specific algorithm these functions are to be multiplied by a constant factor proportional to the time it takes

to execute the body of the innermost loop. When comparing different algorithms that solve the same problem, it

may well happen that one innermost loop is 10 times faster or slower than another. It is rare that this difference

approaches a factor of 100. Thus for n ≈ 1000 an algorithm with time complexity Θ(n · log n) will almost always be

much more efficient than an algorithm with time complexity Θ(n2). For small n, say n = 32, an algorithm of time

complexity Θ(n2) may be more efficient than one of complexity Θ(n · log n) (e.g. if its constant is 10 times smaller).

When we wish to predict exactly how many seconds and bytes a program needs, asymptotic analysis is still

useful but is only a small part of the work. We now have to go back over the formulas and keep track of all the

constant factors discarded in cavalier fashion by the O() notation. We have to assign numbers to the time consumed

by scores of primitive O(1) operations. It may be sufficient to estimate the time consuming primitives, such as

floating-point operations; or it may be necessary to include those that are hidden by a high-level programming

language and answer questions such as: How long does an array access a[i, j] take? A procedure call? Incrementing

the index i in a loop "for i := 0 to n"?

Asymptotics

Asymptotics is a technique used to estimate and compare the growth behavior of functions. Consider the

function

147

This book is licensed under a Creative Commons Attribution 3.0 License

f(x) is said to behave like x for x → ∞ and like 1 / x for x → 0. The motivation for such a statement is that both x and

1 / x are intuitively simpler, more easily understood functions than f(x). A complicated function is unlike any simpler

one across its entire domain, but it usually behaves like a simpler one as x approaches some particular value. Thus

all asymptotic statements include the qualifier x → x0. For the purpose of algorithm analysis we are interested in

the behavior of functions for large values of their argument, and all our definitions below assume x → ∞.

The asymptotic behavior of functions is described by the O(), Ω(), Θ (), and o() notations, as in f(x) ∈ O(g(x)).

Each of these notations assigns to a given function g the set of all functions that are related to g in a well-defined

way. Intuitively, O(), Ω(), Θ(), and o() are used to compare the growth of functions, as ≤, ≥, =, and < are used to

compare numbers. O(g) is the set of all functions that are ≤ g in a precise technical sense that corresponds to the

intuitive notion "grows no faster than g". The definition involves some technicalities signaled by the preamble ∃ ∃ c >

0,∃ > ∃ x0 ∈ X, ∀ x ≥ x0. It says that we ignore constant factors and initial behavior and are interested only in a

function's behavior from some point on. N0 is the set of nonnegative integers, R0 the set of nonnegative reals. In the

following definitions X stands for either N0 or R0. Let g: X → X.

Definition of O(), "big oh":

 O(g) := {f: X → X | ∃ c > 0, ∃ x0 ∈ X, ∀ x ≥ xo : f(x) ≤ c · g(x)}

We say that f ∈ O(g), or that f grows at most as fast as g(x) for x → ∞.

Definition of Ω(), "omega":

Ω(g) := {f: X → X  ∃ c > 0 x0 ∈ X, ∀∀ x ≥ x0: f(x) ≥ c · g(x)}.

We say that f ∈ O(g), or that f grows at least as fast as g(x) for x → ∞.

Definition of Θ(), "theta":

Θ(g) := O(g) ∩ Ω(g).

We say that f ∈ Θ (g), or that f has the same growth rate as g(x) for x → ∞.

Definition of o(), "small oh":

We say that f ∈ o(g), or that f grows slower than g(x) for x → ∞.

Notation: Most of the literature uses = in place of our ∈ , such as in x = O(x2). If you do so, just remember that

this = has none of the standard properties of an equality relation—it is neither commutative nor transitive. Thus

O(x2) = x is not used, and from x = O(x2) and x2 = O(x2) it does not follow that x = x2. The key to avoiding confusion

is the insight that O() is not a function but a set of functions.

Summation formulas

log2 denotes the logarithm to the base 2, ln the natural logarithm to the base e.

Algorithms and Data Structures 148 A Global Text

http://creativecommons.org/licenses/by/3.0/

16. The mathematics of algorithm analysis

The asymptotic behavior of a sum can be derived by comparing the sum to an integral that can be evaluated in

closed form. Let f(x) be a monotonically increasing, integrable function. Then

is bounded below and above by sums (Exhibit 16.1):

Exhibit 16.1: Bounding a definite integral by lower and upper sums.

Letting xi = i + 1, this inequality becomes

so

149

f(x)

x

y

x

0
x
1

x
2

x
n−1 ξ ν

This book is licensed under a Creative Commons Attribution 3.0 License

Example

By substituting

with k > 0 in (∗) we obtain

and therefore

Example

By substituting

 f x=ln x and ∫ ln x dx=x⋅ln x−x
 in (∗∗) we obtain

(n+1)⋅ln (n+1)−n−ln (n+1)≤∑
i=1

n

ln i≤(n+1)cdotln (n+1)−n ,

and therefore

∑
i=1

n

log
2
i=(n+1)⋅log

2
(n+1)−

n

ln 2
+g(n)with g (n)∈O(log n)

Example

By substituting

in (∗∗) we obtain

with g(n) ∈ O(n · log n).

Recurrence relations

A homogeneous linear recurrence relation with constant coefficients is of the form

xn = a1 · xn–1 + a2 · xn–2 + … + ak · xn–k

where the coefficients ai are independent of n and x1, x2, … , xn–1 are specified. There is a general technique for

solving linear recurrence relations with constant coefficients - that is, for determining x n as a function of n. We will

demonstrate this technique for the Fibonacci sequence which is defined by the recurrence

Algorithms and Data Structures 150 A Global Text

http://creativecommons.org/licenses/by/3.0/

16. The mathematics of algorithm analysis

xn = xn–1 + xn–2, x0 = 0, x1 = 1.

We seek a solution of the form

xn = c · rn

with constants c and r to be determined. Substituting this into the Fibonacci recurrence relation yields

c · rn = c · rn–1 + c · rn–2

or

c · rn–2 · (r2 – r – 1) = 0.

This equation is satisfied if either c = 0 or r = 0 or r2 – r – 1 = 0. We obtain the trivial solution xn = 0 for all n if c

= 0 or r = 0. More interestingly, r2– r – 1 = 0 for

The sum of two solutions of a homogeneous linear recurrence relation is obviously also a solution, and it can be

shown that any linear combination of solutions is again a solution. Therefore, the most general solution of the

Fibonacci recurrence has the form

where c1 and c2 are determined as solutions of the linear equations derived from the initial conditions:

which yield

the complete solution for the Fibonacci recurrence relation is therefore

Recurrence relations that are not linear with constant coefficients have no general solution techniques

comparable to the one discussed above. General recurrence relations are solved (or their solutions are

approximated or bounded) by trial-and-error techniques. If the trial and error is guided by some general technique,

it will yield at least a good estimate of the asymptotic behavior of the solution of most recurrence relations.

Example

Consider the recurrence relation

151

This book is licensed under a Creative Commons Attribution 3.0 License

with a > 0 and b > 0, which appears often in the average-case analysis of algorithms and data structures. When we

know from the interpretation of this recurrence that its solution is monotonically nondecreasing, a systematic trial-

and-error process leads to the asymptotic behavior of the solution. The simplest possible try is a constant, xn = c.

Substituting this into (∗) leads to

so xn = c is not a solution. Since the left-hand side xn is smaller than an average of previous values on the right-hand

side, the solution of this recurrence relation must grow faster than c. Next, we try a linear function xn = c · n:

At this stage of the analysis it suffices to focus on the leading terms of each side: c · n on the left and (c + a) · n on

the right. The assumption a > 0 makes the right side larger than the left, and we conclude that a linear function also

grows too slowly to be a solution of the recurrence relation. A new attempt with a function that grows yet faster, xn =

c · n2, leads to

Comparing the leading terms on both sides, we find that the left side is now larger than the right, and conclude

that a quadratic function grows too fast. Having bounded the growth rate of the solution from below and above, we

try functions whose growth rate lies between that of a linear and a quadratic function, such as xn = c · n1.5. A more

sophisticated approach considers a family of functions of the form xn = c · n1+e for any ε > 0: All of them grow too

fast. This suggests xn = c · n · log2 n, which gives

with g(n) ∈ O(n · log n) and h(n) ∈ O(log n). To match the linear terms on each side, we must choose c such that

or c = a · ln 4 ≈ 1.386 · a. Hence we now know that the solution to the recurrence relation (∗) has the form

Algorithms and Data Structures 152 A Global Text

http://creativecommons.org/licenses/by/3.0/

16. The mathematics of algorithm analysis

Asymptotic performance of divide-and-conquer algorithms

We illustrate the power of the techniques developed in previous sections by analyzing the asymptotic

performance not of a specific algorithm, but rather, of an entire class of divide-and-conquer algorithms. In “Divide

and conquer recursion” we presented the following schema for divide-and-conquer algorithms that partition the set

of data into two parts:

A(D): if simple(D) then return(A0(D))

else 1. divide: partition D into D1 and D2;

2. conquer: R1 := A(D1); R2 := A(D2);

3. combine: return(merge(R1, R2));

Assume further that the data set D can always be partitioned into two halves, D1 and D2, at every level of

recursion. Two comments are appropriate:

1. For repeated halving to be possible it is not necessary that the size n of the data set D be a power of 2, n =

2k. It is not important that D be partitioned into two exact halves—approximate halves will do. Imagine

padding any data set D whose size is not a power of 2 with dummy elements, up to the next power of 2.

Dummies can always be found that do not disturb the real computation: for example, by replicating

elements or by appending sentinels. Padding is usually just a conceptual trick that may help in

understanding the process, but need not necessarily generate any additional data.

2. Whether or not the divide step is guaranteed to partition D into two approximate halves, on the other hand,

depends critically on the problem and on the data structures used. Example: Binary search in an ordered

array partitions D into halves by probing the element at the midpoint; the same idea is impractical in a

linked list because the midpoint is not directly accessible.

Under our assumption of halving, the time complexity T(n) of algorithm A applied to data D of size n satisfies

the recurrence relation

where f(n) is the sum of the partitioning or splitting time and the "stitching time" required to merge two solutions

of size n / 2 into a solution of size n. Repeated substitution yields

The term n · T(1) expresses the fact that every data item gets looked at, the second sums up the splitting and

stitching time. Three typical cases occur:

(a) Constant time splitting and merging f(n) = c yields

153

This book is licensed under a Creative Commons Attribution 3.0 License

T(n) = (T(1) + c) · n.

Example: Find the maximum of n numbers.

(b) Linear time splitting and merging f(n) = a · n + b yields

T(n) = a · n · log2 n + (T(1) + b) · n.

Examples: Mergesort, quicksort.

(c) Expensive splitting and merging: n ∈ o(f(n)) yields

T(n) = n · T(1) + O(f(n) · log n)

and therefore rarely leads to interesting algorithms.

Permutations

Inversions

Let (ak: 1 ≤ k ≤ n) be a permutation of the integers 1 .. n. A pair (a i, aj), 1 ≤ I < j ≤ n, is called an inversion iff ai >

aj. What is the average number of inversions in a permutation? Consider all permutations in pairs; that is, with any

permutation A:

a1 = x1; a2 = x2; … ; an = xn

consider its inverse A', which contains the elements of A in inverse order:

a1 = xn; a2 = xn–1; … ; an = x1.

In one of these two permutations xi and xj are in the correct order, in the other, they form an inversion. Since

there are n· (n – 1) / 2 pairs of elements (xi, xj) with 1 ≤ i < j ≤ n there are, on average,

inversions.

Average distance

Let (ak: 1 ≤ k ≤ n) be a permutation of the natural numbers from 1 to n. The distance of the element a i from its

correct position is |ai – i|. The total distance of all elements from their correct positions is

Therefore, the average total distance (i.e. the average over all n! permutations) is

Algorithms and Data Structures 154 A Global Text

http://creativecommons.org/licenses/by/3.0/

16. The mathematics of algorithm analysis

Let 1 ≤ i ≤ n and 1 ≤ j ≤ n. Consider all permutations for which a i is equal to j. Since there are (n – 1)! such

permutations, we obtain

Therefore,

the average distance of an element ai from its correct position is therefore

Trees

Trees are ubiquitous in discrete mathematics and computer science, and this section summarizes some of the

basic concepts, terminology, and results. Although trees come in different versions, in the context of algorithms and

data structures, "tree" almost always means an ordered rooted tree. An ordered rooted tree is either empty or it

consists of a node, called a root, and a sequence of k ordered subtrees T1, T2, … , Tk (Exhibit 16.2). The nodes of an

ordered tree that have only empty subtrees are called leaves or external nodes, the other nodes are called internal

nodes (Exhibit 16.3). The roots of the subtrees attached to a node are its children; and this node is their parent.

155

This book is licensed under a Creative Commons Attribution 3.0 License

Exhibit 16.2: Recursive definition of a rooted, ordered tree.

The level of a node is defined recursively. The root of a tree is at level 0. The children of a node at level t are at

level t + 1. The level of a node is the length of the path from the root of the tree to this node. The height of a tree is

defined as the maximum level of all leaves. The path length of a tree is the sum of the levels of all its nodes (Exhibit

16.3).

Exhibit 16.3: A tree of height = 4 and path length = 35.

A binary tree is an ordered tree whose nodes have at most two children. A 0-2 binary tree is a tree in which

every node has zero or two children but not one. A 0-2 tree with n leaves has exactly n – 1 internal nodes. A binary

tree of height h is called complete (completely balanced) if it has 2h+1 – 1 nodes (Exhibit 16.4. A binary tree of height

h is called almost complete if all its leaves are on levels h – 1 and h, and all leaves on level h are as far left as

possible (Exhibit 16.4).

Algorithms and Data Structures 156 A Global Text

http://creativecommons.org/licenses/by/3.0/

16. The mathematics of algorithm analysis

Exhibit 16.4: Examples of well-balanced binary trees.

Exercises

1. Suppose that we are comparing implementations of two algorithms on the same machine. For inputs of size

n, the first algorithm runs in 9 · n2 steps, while the second algorithm runs in 81 · n · log2 n steps. Assuming

that the steps in both algorithms take the same time, for which values of n does the first algorithm beat the

second algorithm?

2. What is the smallest value of n such that an algorithm whose running time is 256 · n2 runs faster than an

algorithm whose running time is 2n on the same machine?

3. For each of the following functions fi(n), determine a function g(n) such that fi(n) ∈ Θ (g(n)). The function

g(n) should be as simple as possible.

f1(n) = 0.001 · n7 + n2 + 2 · n

f2(n) = n · log n + log n + 1234 · n

f3(n) = 5 · n · log n + n2 · log n + n2

f4(n) = 5 · n · log n + n3 + n2 · log n

4. Prove formally that 1024 · n 2+ 5 · n ∈ Θ (n2).

5. Give an asymptotically tight bound for the following summation:

6. Find the most general solutions to the following recurrence relations.

7. Solve the recurrence T(√n) = 2·T() + log2 n. Hint: Make a change of variables m = log2 n.

8. Compute the number of inversions and the total distance for the permutation (3 1 2 4).

157

